

Reference: Van Cleve et. al. "Helium-3 Mining Aerostats in the Atmospheres of the Outer Planets", 2002

Imagine an Interplanetary Future Where -

- d-He3 fusion produces most of Earth's energy needs without radioactivity or carbon emissions
- Space transportation has been revolutionized by an efficient fusion propulsion system with exhaust velocity up to 0.088 c
- Space commerce is stimulated by the existence of an interplanetary cargo worth \$3-M a kilogram
- Unmanned probes travel to the nearest star systems with flight times less than a human lifetime

He-3 Fusion for Energy & Propulsion

- reactants are stable and storable
- products are energetic, charged and stable
 - Efficient electrical generation from MHD
 - No activation and embrittlement of reactor vessel
 - Efficient conversion to thrust with exhaust velocity up to 0.088 c --> ~50 yr interstellar flight using known physics.
- $3.6x10^{14}$ J/kg of d-He3 mixture = $1.0x10^8$ kWh/kg
 - Fuel is about 20% of the kWh cost of electricity
 - If electricity is 15¢/kWh then He3 has a value of \$3M/kg

He-3 is one of the few commodities worth interplanetary freight costs

Why Outer Planets for He-3?

- Earth: breeding of tritium from either isotope of lithium by neutron bombardment, tritons decay to He-3.
 - Containment, waste problems same as d-t fission.
 - USA has no current capability.
 - Lithium inventory?
- Moon: solar wind implanted in regolith, 10 ppb (10⁻⁸) by mass in uppermost few meters. ~1000 yr of 2001 energy needs- a starter catalyst?.
- Outer planets: primordial He3, ~10 parts per million (10⁻⁵), ~10⁹ yr of 2001 energy needs- the ultimate energy source?.

Pro:

Closest to Earth and Sun

Con:

- Huge gravity means return vehicle has mass ratio >20 (nuclear thermal I_{sp} = 900 s)
 - No mass budget left for cargo!
- A lot hotter at a any given density
 - Galileo probe killed by heat not by pressure

Which Outer Planet-Saturn

Pro:

- Not as far as Uranus and Neptune
- Rapid rotation substantially reduces ΔV to orbit Con:
- Seen as depleted ~5x in Helium compared to other outer planets
 - reanalysis of Voyager data 20 yr later restores that 5x- maybe
 - won't know for sure until we send an entry probe
- Rings as a navigation hazard
 - need close-in, co-orbiting mission to look

Pro

- Primordial He3 abundance?
- ΔV to orbit requires mass ratio < 5
- Closer than Neptune

Con

- Axial tilt complicates interplanetary travel
- Twice as far from Earth as Saturn

Uranus may be the closest planet without major possible problems -- but we must return to both Saturn to be sure

Do we really know how much He3 is there?

- He3/He4 cannot be measured by remote sensing
- He3/H₂ and He3/He4 ratios have been measured in situ only by Galileo at Jupiter
- He3/He4 ratio of 10⁻⁴ to 1.5x10⁻⁴ from meteors, solar wind, cosmology
- Use Galileo results for He3/He4 = 10⁻⁴ and Voyager results (?) for He4/H₂

He-3 Mining with Balloons

 Balloon diameter : 80 m

146 tonnes Total Plant mass:

Return vehicle: 59 tonnes

 Total lift needed: 205 tonnes

He3 plant

Notional Distillation Plant Concept

Thinking Big about our Space Cryogenics Future

Energy Economics $He3/H_2 = 10 ppm$

Table 1

Stage	Process	Energy (J)/g He3 7.2x10 ⁷
1, 2, 3	cool atmosphere to 16 K	7.2×10^7
3	liquify H ₂ at 16 K	3.2×10^8
5	cool He from 16 K to 4.2 K	1.3×10^7
5	liquify He at 4.2 K	1.1×10^7
6	cool LHe from 4.2 to 1.2 K	1.2×10^7
total		$4.3x10^8$

Transportation on 2 yr trajectory: 5x10⁷J/g He3

Energy released: 6x10¹¹ J/g He3

Theoretical energy payback: ~1000

The Persian Gulf of the Solar System, 2150

The most valuable interplanetary commodities are refined He-3, deuterium, and heavy metals

Next Steps

- Jupiter Icy Moons Orbiter (JIMO)
 - nuclear fission-powered
 - electric propulsion flight system
 - Big deal: 20 tonnes, >\$4 B, 10 kWe
 - First of a series: Project Prometheus
- Saturn Ring Observer
- Uranus/Neptune Orbiter with Probes
- Self-deploying balloon probes for Mars, Titan
- Discovery/New Frontiers missions to other resource sites (Moon, asteroids, comets) for interplanetary commodity economy

A Trial Balloon?

Scientific balloon missions to outer planets, using Pu RTGs and/or O₂ burners, to study

- He3/He4 and He/H₂ ratio
- pressure vs. temperature for 1
- trace gas composition
- entry, deployment, and telemetry engineering experiments

A science balloon could be as small as 2.8 m diameter, and use at most 7 kg of Plutonium as a heat and power source